
Management of the Small Renal Mass

Frank Keeley

From Philadelphia...


lefferson University Hospitals

...to Bristol, England

Southmead Hospital, 1916

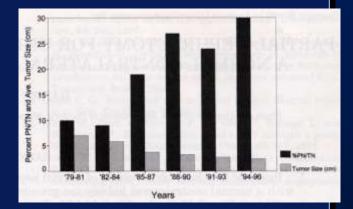
Southmead Hospital, 2013

Southmead Hospital, 2014

Management Options for SRMs

- Observation
- Radical nephrectomy open or laparoscopic
- Partial nephrectomy open, lap or robotic
- Needle ablative therapy

Laparoscopic Radical Nephrectomy


- Standard of care in UK
 Transperitoneal or Retroperitoneal
- Indications: up to 15 cm

Is Laparoscopic Radical Nephrectomy Overtreatment?

Earlier detection

- Smaller tumors
 - Lower stage
 - Lower grade
 - Better prognosis
- Nephron-sparing surgery

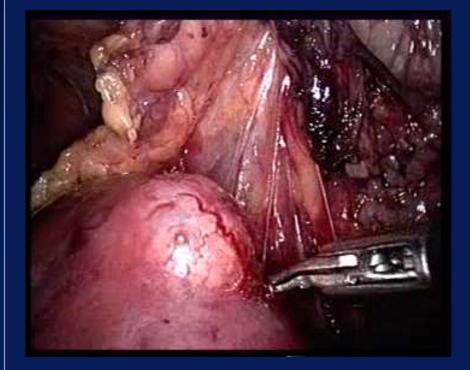
Herr, J Urol 1999

Why Nephron-Sparing?

- High number of benign lesions removed (up to 28%)
- Risk of chronic renal insufficiency in up to 22%

Lau et al. Mayo Clinic Proc. 2000

Nephrectomy and Renal Function

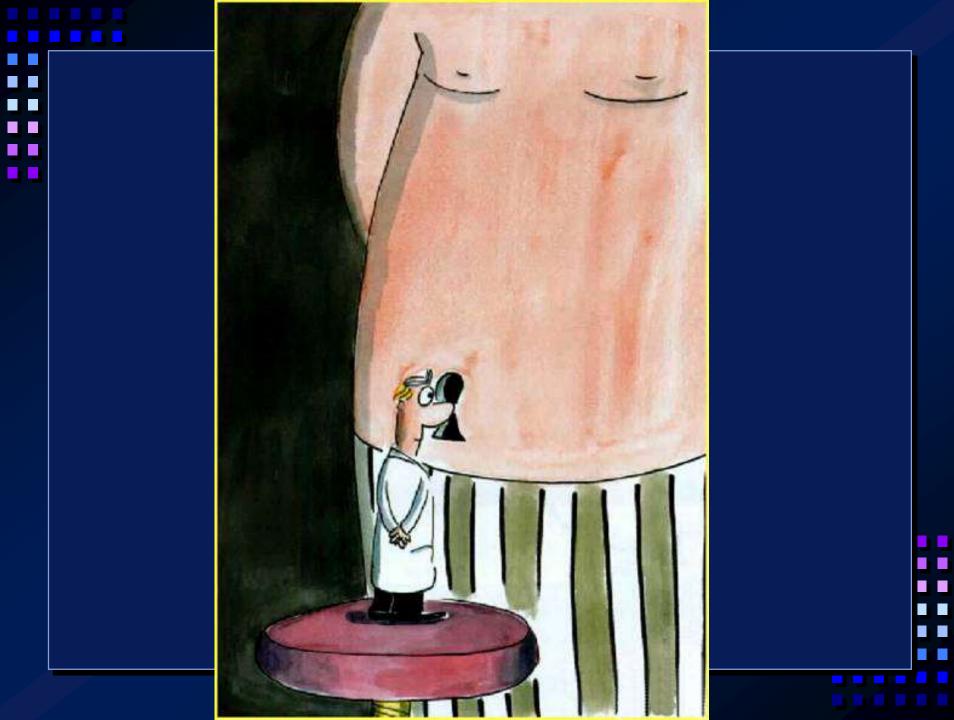

An eGFR <60 is an independent risk factor for...</p>

- development of cardiovascular disease
- number of hospitalizations
- premature death
- ...even in patients not needing renal replacement therapy

Advantages of Partial Nephrectomy

- After partial rather than radical nephrectomy:
 - less decline in eGFR¹ or rise in serum creatinine²
 - A lower risk of progression to renal failure³
 - There may be reduced cardiovascular or even overall mortality, but studies conflict^{4,5}
 - The only RCT showed lower OS in partial group⁵
 - Remains a controversial area
 1 Huang et al 2006
 2 McKiernan et al 2002
 3 Klarenbach et al 2011
 4 Huang et al 2009
 5 Van Poppel et al 2011

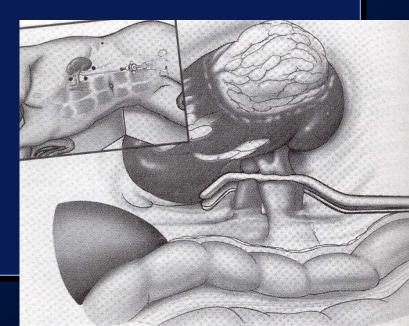
Nephron Sparing Surgery: Issues


- Disease control
- Renal function
- Morbidity
- Complications

Open Partial Nephrectomy: Loin Incision

- Painful
- Loin bulge in up to 50%
- Atrophy of rectus muscle
- 67% notice bulge
- Return to work
- Can this be avoided?

Chaterjee et al Urol Oncol 2004



Measuring Outcomes

- Oncological: negative margins, recurrence rates, MFS, CSS
- Function: WIT < 25 minutes</p>
- Safety: no complications
- If all true = trifecta
- Depends on case selection and technique
- Blood loss correlates to outcomes
- Ischemia vs margins/complications

Laparoscopic Partial Nephrectomy: Issues

- Difficult technique
- Difficult to suture
- 1. Margin
- 2. Warm ischemia
- 3. Complications

Lap/Robotic Partial: Technical Limitations

- Limited hemostasis
- Limited blunt dissection
- Enucleation difficult if not impossible
- Vision limited due to bleeding
- Effect on margins & complications?

Laparoscopic Partial Nephrectomy: Issues

- Difficult technique
- Difficult to suture
- 1. Margin

- 2. Warm ischemia
- 3. Complications

Functional outcome: Renal damage

- Several studies have attempted to establish what is the cut off time beyond which ischemia can lead to irreversible renal damage
 - Porpigllia F et al. Eur Urol $2007 \rightarrow 30$ min
 - Becker F et al. Eur Urol 2009 \rightarrow 20 min
 - Thompson R et al. Eur Urol $2010 \rightarrow 25 \text{ min}$

Problem: Many lap partial series report WIT > 30 minutes

At What Point Does Warm Ischemia Cause Permanent Renal Damage during Partial Nephrectomy?

R. Houston Thompson, Michael L. Blute*

EUROPEAN UROLOGY 52 (2007) 961-963

Resection without Ischemia: Technique

- Renal artery and vein isolated
- Tumor excision, simultaneous hemostasis
- Hemostasis:
 - Bipolar or monopolar/harmonic scalpel
 - Wet electrode/hydro jet/Thulium laser
- Sealing of cut surface: Fibrin glue, FloSeal, Evicel
- BUT: poor view of edge of tumor
 - Margin difficult to judge
- Conclusion: 1 or 2 out of 3 (trifecta)

'Zero Ischemia'

- Selective branch microdissection of the renal artery/vein with intraoperative reduction of BP
- Risk of loss of vision at base of tumor
- Risk of complications from hypotension & microdissection
- EBL = 208 ml but transfusion rate = 20%?
- Trifecta: only ischemia is better; complications higher; margins questionable

Kidney Cancer

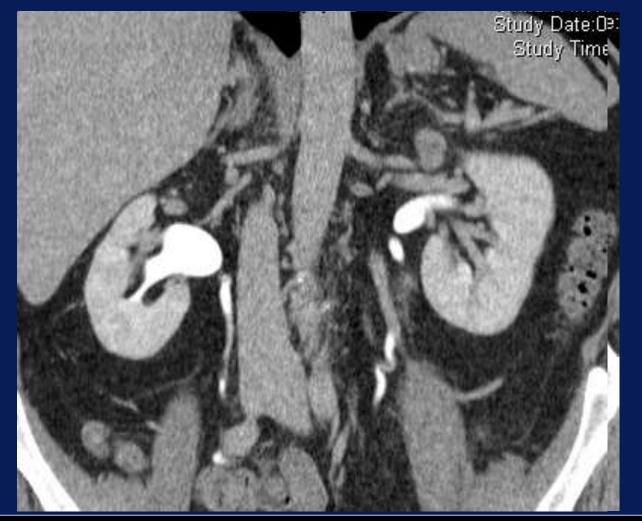
"Zero Ischemia" Partial Nephrectomy: Novel Laparoscopic and Robotic Technique

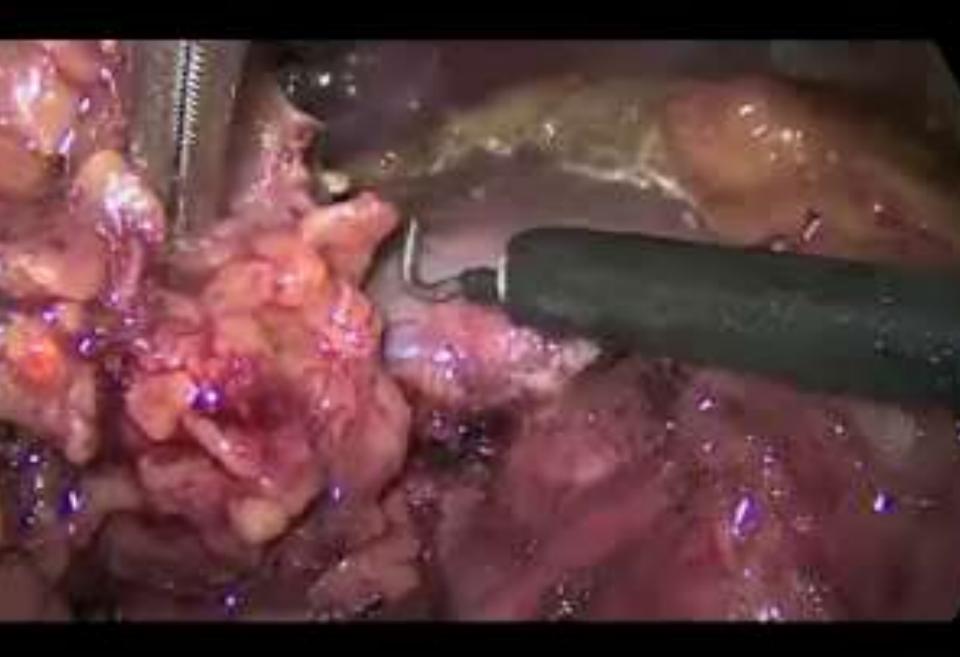
Inderbir S. Gill^{*}, Manuel S. Eisenberg, Monish Aron, Andre Berger, Osamu Ukimura, Mukul B. Patil, Vito Campese, Duraiyah Thangathurai, Mihir M. Desai

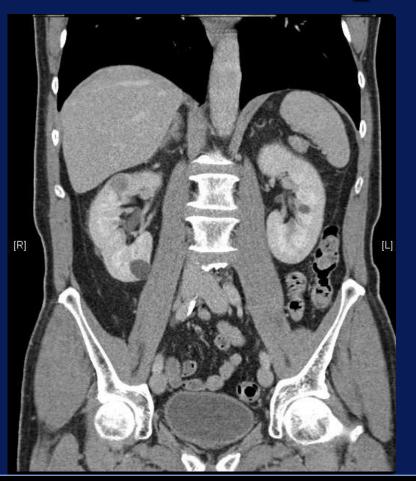
Center for Advanced Robotic & Laparoscopic Surgery, USC Institute of Urology, Division of Nephrology and Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA

Laparoscopic Partial Nephrectomy: Early Declamping

- Simple rationale: early declamping before the haemostatic step of the procedure or just after the continuous stitches on the surgical bed
- Mean WIT = 13.9 min vs 31 min (previous publications) p<0.0001</p>
- Conclusion: Trifecta more likely



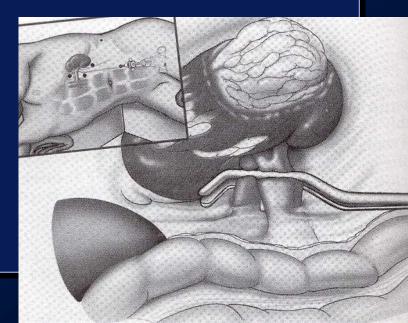

Nguyen MM et al. J Urol 2008


Selective Ischemia

Hilar Tumor

Hilar Tumor Selective Clamping

Non-Clamping in **Selective Cases**


Study Date:06/06/2012 lm:59 Study Time: 16:44:14 MRN³ 30 [R] [L] C40 VV400

CE

Laparoscopic Partial Nephrectomy: Issues

Difficult technique
Difficult to suture
Warm ischemia
Complications

Complications of Lap PN

- Overall: 33%
 Intraop.: 5.5%
 Postop.: 12%
 Delayed: 15.5%
 Bleeding: 9.5%
 Urine leak: 4.5%
- Worse than open partial nx, but early series
 Solution: Improve technique, case selection

Gill et al. 2005

Risk Factors for Complications

- 335 pts LPN; 23 (7%) required transfusion
- Age, tumor size, op time, HTN, DM, obesity, CRI, CHF all associated with bleeding
- ASA grade, smoker independent risk factors
- Conclusion: LPN safest in young, healthy patients
- Offer alternatives to older, unfit

Richstone et al. Urology 2011

Laparoscopic Partial Nephrectomy: Reproducible?

- Outside US, no Indy Gill
- No Mayo Clinic
- Few high volume centers
- Therefore...
- Higher complications?
- Worse results?

Laparoscopic Partial **Nephrectomy: Solutions** Simplify technique Limit warm ischemia time Better training High-volume centers

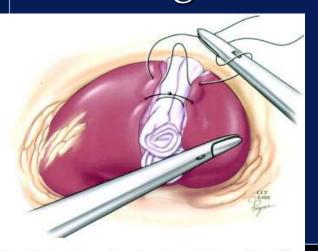
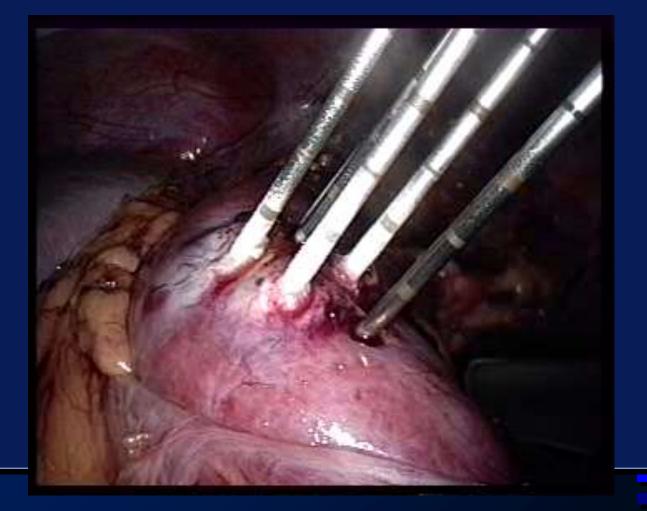
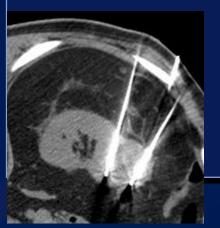


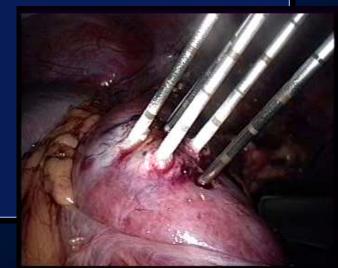
Figure 3 – Renal parenchymal repair over bolsters. Adapted from reference 10. (Reprinted with the permission of the Cleveland Clinic Foundation).


Evolving Technique: Bristol Experience

- 1998: Hand-assisted radical nephrectomy
- 1999: Standard laparoscopic radical nephrectomy
- 2003: Laparoscopic partial nephrectomy
- 2004: FloSeal to aid hemostasis
- 2006: Bolsters and clips instead of tying sutures
- 2009: V-lock suture
- 2010: Early declamping: Mean time now 12 minutes
- 2011: Selective or regional renal ischemia
- 2012: Robotic surgery (+ laparoscopic and open)
- Volume: now higher than radical

If You Plan to Start Laparoscopic Partial Nx...


- You must be...
- Confident, high-volume laparoscopic surgeon
- Confident at laparoscopic suturing
- Know the technique inside and out
- You must have...
- Appropriate equipment & a good team
- You must...
- Choose cases carefully
- Have backup support in case of bleeding


Cryoablation

Why Needle Ablation?

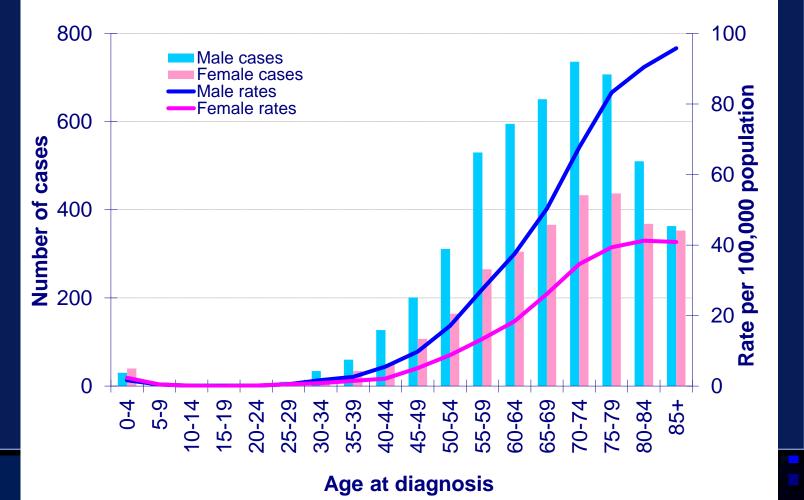
- Cancer now subclinical...and getting smaller
- Smaller disease invites a different approach
-open to laparoscopic, poisoning to targeted molecular cell proliferators, conformal radiotherapy to 'cyberknife'....
- Cryo suited to discrete rounded sub-4cm disease

Cryoablation: Overview

- Patient selection
- Outcomes
 - Functional
 - Oncological
 - Complications
- Patient selection (revisited)

Patient Selection

Typical Bristol patients with SRMCryo considered only if unfit for partial

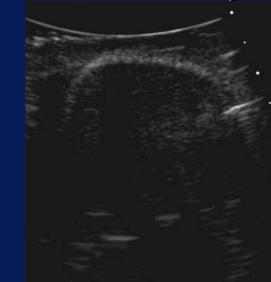


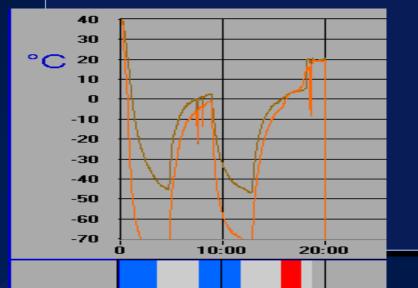
Highest Incidence: the Elderly

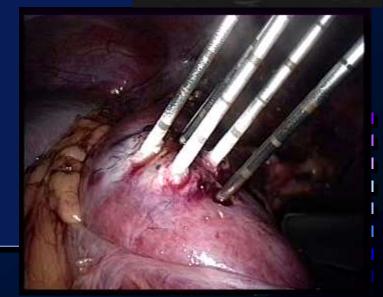
Figure 1.2: Numbers of new cases and age specific incidence

Effective Needle Ablation: Requirements 1. Must avoid collateral damage **2.** Energy must be targeted accurately **3.** Energy must induce reliable cell kill **4.** Follow-up tests (imaging) must distinguish success from failure

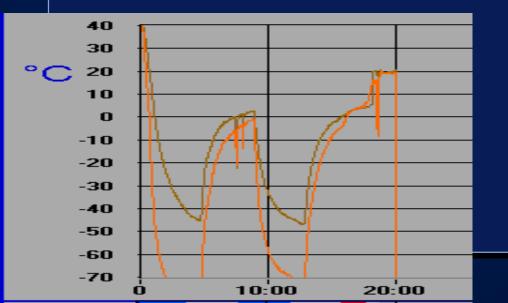
1. Avoid Collateral Damage

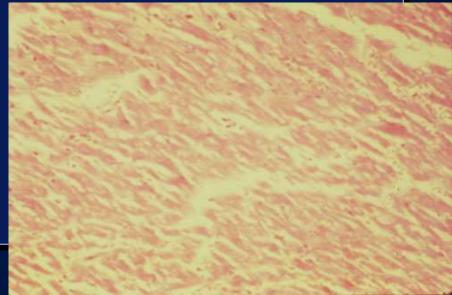

 Select patients depending on tumor site and size
 Preserve collateral structures
 No 'Skip lesions'




2. Target Accurately: Cryo

Targeting


- Multineedle configuration
- Shape the ice to fit tumor
- Monitoring ablation development
 - Temperature, imaging, visual



3. Induce Reliable Cell Kill Renal Cryoablation Principles Temp < -40°C kills; < -20°C kills if used twice</p> Multiple "freeze/thaw" cycles

Effective Needle Ablation: Requirements 1. Must avoid collateral damage **2.** Energy must be targeted accurately **3.** Energy must induce reliable cell kill **4.** Follow-up tests (imaging) must distinguish success from failure

Decreasing size of the lesion

4 weeks

3 months

9 months

No contrast-enhancement

Before treatment

3 months after treatment

Bristol Lap Cryo Outcomes

Number of tumours treated	110
Tumour size (mm)	28.8 (9-53)
Age (years)	65 (35-89)
Operation time (min)	163 (100-274)
Postoperative complications I II IIIA IIIB	10 6 5 2
Follow-up:	4.3 years
Local Failure/persistence:	4
Late recurrence:	2
Metastases:	0

Cryoablation vs. Partial

- Retrospective analysis of 1803 cT1 pts. at Mayo Clinic
- cT1a: Onc. outcomes for partial & cryo superior to RF
- cT1b: Partial group younger, healthier, & better OS than cryo; oncological outcomes similar
- Syst. reviews: cryo safer but higher local recurrence
- Different baseline characteristics; interpret with caution
- Systematic bias: large numbers of apples v oranges
- RCT: Feasibility study (CONSERVE) comparing needle ablation to extirpative surgery
- SURAB comparing ablation to surveillance
- Difficult to prove a difference

Thompson Eur Urol 2014; Klatte J Urol 2014

Functional Outcomes

Washington University in St. Louis
267 cryo vs. 233 robotic partial
eGFR 6% lower vs. 13% lower
Loss of parenchyma and/or ischemia
Low eGFR strong predictive factor for OS

Tanagho et al J Endourol 2013 Kim et al Urology 2014 Patient Selection (Revisited)

- <u>Cases to avoid:</u>
 Truly unfit
 High nephrometry score
 Central
- Large

Summary

Smaller tumor incidence rising

- More treatment options are available
- Treatment with less morbidity becomes more attractive
- Extirpative surgery remains standard of care
- Techniques evolving quickly